Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 196
Filtrar
1.
Phys Chem Chem Phys ; 26(14): 10660-10672, 2024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38511550

RESUMO

The cap-dependent mRNA translation is dysregulated in many kinds of cancers. The interaction between eIF4E and eIF4G through a canonical eIF4E-binding motif (CEBM) determines the efficacy of the cap-dependent mRNA translation. eIF4E-binding proteins (4E-BPs) share the CEBM and compete with eIF4G for the same binding surface of eIF4E and then inhibit the mRNA translation. 4E-BPs function as tumor repressors in nature. Hyperphosphorylation of 4E-BPs regulates the structure folding and causes the dissociation of 4E-BPs from eIF4E. However, until now, there has been no structure of the full-length 4E-BPs in complex with eIF4E. The regulation mechanism of phosphorylation is still unclear. In this work, we first investigate the interactions of human eIF4E with the CEBM and an auxiliary eIF4E-binding motif (AEBM) in eIF4G and 4E-BPs. The results unravel that the structure and interactions of the CEBM are highly conserved between eIF4G and 4E-BPs. However, the extended CEBM (ECEBM) in 4E-BPs forms a longer helix than that in eIF4G. The residue R62 in the ECEBM of 4E-BP2 forms salt bridges with E32 and E70 of eIF4E. The residue R63 of 4E-BP2 forms two special hydrogen bonds with N77 of eIF4E. Both of these interactions are missing in eIF4G. The AEBM of 4E-BPs folds into a ß-sheet conformation, which protects V81 inside a hydrophobic core in 4E-BP2. In eIF4G, the AEBM exists in a random coil state. The hydrophilic residues S637 and D638 of eIF4G open the hydrophobic core for solvents. The results show that the ECEBM and AEBM may be responsible for the competing advantage of 4E-BP2. Finally, based on our previous work (J. Zeng, F. Jiang and Y. D. Wu, J. Chem. Theory Comput., 2017, 13, 320), the human eIF4E:4E-BP2 complex (eIF4E:BP2P18-I88) including all reported phosphorylation sites is predicted. The eIF4E:BP2P18-I88 complex is different from the existing experimental eIF4E:eIF4G complex and provides an important structure for further studying the regulation mechanism of phosphorylation in 4E-BPs.


Assuntos
Fator de Iniciação 4E em Eucariotos , Fator de Iniciação 4G em Eucariotos , Humanos , Proteínas de Transporte/metabolismo , Fator de Iniciação 4E em Eucariotos/química , Fator de Iniciação 4E em Eucariotos/genética , Fator de Iniciação 4E em Eucariotos/metabolismo , Fator de Iniciação 4G em Eucariotos/química , Fator de Iniciação 4G em Eucariotos/genética , Fator de Iniciação 4G em Eucariotos/metabolismo , Ligação Proteica , Biossíntese de Proteínas
2.
J Virol ; 98(2): e0194823, 2024 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-38299843

RESUMO

The eukaryotic translation initiation factor eIF4E can regulate cellular translation via phosphorylation on serine 209. In a recent study, by two rounds of TMT relative quantitative proteomics, we found that phosphorylated eIF4E (p-eIF4E) favors the translation of selected mRNAs, and the encoded proteins are mainly involved in ECM-receptor, focal adhesion, and PI3K-Akt signaling. The current paper is focused on the relationship between p-eIF4E and the downstream host cell proteins, and their presumed effect on efficient entry of PEDV. We found that the depletion of membrane-residential factor TSPAN3, CD63, and ITGB2 significantly inhibited viral invasion of PEDV, and reduced the entry of pseudotyped particles PEDV-pp, SARS-CoV-pp, and SARS-CoV-2-pp. The specific antibodies of TSPAN3, CD63, and ITGB2 blocked the adsorption of PEDV into host cells. Moreover, we detected that eIF4E phosphorylation was increased at 1 h after PEDV infection, in accordance with the expression of TSPAN3, CD63, and ITGB2. Similar trends appeared in the intestines of piglets in the early stage of PEDV challenge. Compared with Vero cells, S209A-Vero cells in which eIF4E cannot be phosphorylated showed a decrease of invading PEDV virions. MNK kinase inhibitor blocked PEDV invasion, as well as reduced the accumulation of TSPAN3, CD63, and ITGB2. Further study showed that the ERK-MNK pathway was responsible for the regulation of PEDV-induced early phosphorylation of eIF4E. This paper demonstrates for the first time the connections among p-eIF4E stimulation and membrane-residential host factors. Our findings also enrich the understanding of the biological function of phosphorylated eIF4E during the viral life cycle.IMPORTANCEThe eukaryotic translation initiation factor eIF4E can regulate cellular translation via phosphorylation. In our previous study, several host factors susceptible to a high level of p-eIF4E were found to be conducive to viral infection by coronavirus PEDV. The current paper is focused on cell membrane-residential factors, which are involved in signal pathways that are sensitive to phosphorylated eIF4E. We found that the ERK-MNK pathway was activated, which resulted in the stimulation of phosphorylation of eIF4E in early PEDV infection. Phospho-eIF4E promoted the viral invasion of PEDV by upregulating the expression of host factors TSPAN3, CD63, and ITGB2 at the translation level rather than at the transcription level. Moreover, TSPAN3, CD63, or ITGB2 facilitates the efficient entry of coronavirus SARS-CoV, SARS-CoV-2, and HCoV-OC43. Our findings broaden our insights into the dynamic phosphorylation of eIF4E during the viral life cycle, and provide further evidence that phosphorylated eIF4E regulates selective translation of host mRNA.


Assuntos
Membrana Celular , Fator de Iniciação 4E em Eucariotos , Vírus da Diarreia Epidêmica Suína , Biossíntese de Proteínas , Internalização do Vírus , Animais , Membrana Celular/química , Membrana Celular/genética , Membrana Celular/metabolismo , Membrana Celular/virologia , Chlorocebus aethiops , Fator de Iniciação 4E em Eucariotos/química , Fator de Iniciação 4E em Eucariotos/metabolismo , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Cadeias beta de Integrinas/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Fosforilação , Vírus da Diarreia Epidêmica Suína/fisiologia , Proteínas Serina-Treonina Quinases/antagonistas & inibidores , Proteômica , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Suínos , Tetraspaninas/metabolismo , Células Vero
3.
J Med Chem ; 67(4): 3167-3189, 2024 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-38315032

RESUMO

Mitogen-activated protein kinase-interacting protein kinases (MNKs) and phosphorylate eukaryotic initiation factor 4E (p-eIF4E) play a critical role in regulating mRNA translation and protein synthesis associated with the development of cancer, metabolism, and inflammation. This study undertakes the modification of a 4-(3-(piperidin-4-yl)-1H-pyrazol-5-yl)pyridine structure, leading to the discovery of 4-(3-(piperidin-4-yl)-1H-pyrazol-5-yl)-1H-pyrrolo[2,3-b]pyridine (D25) as a potent and selective MNK inhibitor. D25 demonstrated inhibitory activity, with IC50 values of 120.6 nM for MNK1 and 134.7 nM for MNK2, showing exceptional selectivity. D25 inhibited the expression of pro-inflammation cytokines in RAW264.7 cells, such as inducible NO synthase, cyclooxygenase-2, and interleukin-6 (IL-6). In the lipopolysaccharide-induced sepsis mouse model, D25 significantly reduced p-eIF4E in spleen tissue and decreased the expression of tumor necrosis factor α, interleukin-1ß, and IL-6, and it also reduced the production of reactive oxygen species, resulting in improved organ injury caused by inflammation. This suggests that D25 may provide a potential treatment for sepsis and sepsis-associated acute spleen injury.


Assuntos
Proteínas Serina-Treonina Quinases , Sepse , Animais , Camundongos , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Fator de Iniciação 4E em Eucariotos/química , Baço , Interleucina-6/metabolismo , Quinases de Proteína Quinase Ativadas por Mitógeno/metabolismo , Inflamação/tratamento farmacológico , Inflamação/metabolismo , Sepse/tratamento farmacológico , Piridinas/metabolismo , Fosforilação
4.
Phys Chem Chem Phys ; 26(3): 2073-2081, 2024 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-38131207

RESUMO

Interaction between the cap-binding protein eIF4E and the scaffolding protein eIF4G is essential for the cap-dependent translation initiation in eukaryotes. In the Saccharomyces cerevisiae eIF4G/eIF4E complex, the intrinsically disordered eIF4E-binding domain of eIF4G folds into a bracelet-like structure upon binding to eIF4E. Aiming to unveil the molecular mechanism underlying the binding-wrapping process of eIF4G with eIF4E, we performed extensive coarse-grained molecular dynamics simulations and transition path analysis in this work. The major transition pathway revealed from our simulations showed that docking of the eIF4E-binding motif of eIF4G to the folded core of eIF4E initiates the binding process and then the disordered eIF4G wraps around the N-terminal tail of eIF4E. Additionally, we identified a minor transition pathway which indicates the involvement of topological frustration in the binding process. By manipulating the interaction strength of the wrapping contacts and the latching contacts, we further dissected factors affecting the formation of topological frustration and the binding transition kinetics. Our findings provide new clues for experimental studies on the binding mechanism of eIF4G to eIF4E in the future and exemplify the involvement of topological frustration in the binding process of intrinsically disordered proteins.


Assuntos
Fator de Iniciação 4E em Eucariotos , Fator de Iniciação 4G em Eucariotos , Fator de Iniciação 4E em Eucariotos/química , Fator de Iniciação 4E em Eucariotos/genética , Fator de Iniciação 4E em Eucariotos/metabolismo , Fator de Iniciação 4G em Eucariotos/química , Fator de Iniciação 4G em Eucariotos/genética , Fator de Iniciação 4G em Eucariotos/metabolismo , Simulação de Dinâmica Molecular , Biossíntese de Proteínas , Saccharomyces cerevisiae , Ligação Proteica
5.
Eur Biophys J ; 52(6-7): 497-510, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37798395

RESUMO

The cap at the 5'terminus of mRNA is a key determinant of gene expression in eukaryotic cells, which among others is required for cap dependent translation and protects mRNA from degradation. These properties of cap are mediated by several proteins. One of them is 4E-Transporter (4E-T), which plays an important role in translational repression, mRNA decay and P-bodies formation. 4E-T is also one of several proteins that interact with eukaryotic initiation factor 4E (eIF4E), a cap binding protein which is a key component of the translation initiation machinery. The molecular mechanisms underlying the interactions of these two proteins are crucial for mRNA processing. Studying the interactions between human eIF4E1a and the N-terminal fragment of 4E-T that possesses unstructured 4E-binding motifs under non-reducing conditions, we observed that 4E-T preferentially forms an intramolecular disulphide bond. This "disulphide loop" reduces affinity of 4E-T for eIF4E1a by about 300-fold. Considering that only human 4E-T possesses two cysteines located between the 4E binding motifs, we proposed that the disulphide bond may act as a switch to regulate interactions between the two proteins.


Assuntos
Fator de Iniciação 4E em Eucariotos , Biossíntese de Proteínas , Humanos , Ligação Proteica , RNA Mensageiro/genética , Fator de Iniciação 4E em Eucariotos/química , Fator de Iniciação 4E em Eucariotos/genética , Fator de Iniciação 4E em Eucariotos/metabolismo
6.
Biol Rev Camb Philos Soc ; 98(6): 2284-2306, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37553111

RESUMO

The evolutionary origin of eukaryotes spurred the transition from prokaryotic-like translation to a more sophisticated, eukaryotic translation. During this process, successive gene duplication of a single, primordial eIF4E gene encoding the mRNA cap-binding protein eukaryotic translation initiation factor 4E (eIF4E) gave rise to a plethora of paralog genes across eukaryotes that underwent further functional diversification in RNA metabolism. The ability to take different roles is due to eIF4E promiscuity in binding many partner proteins, rendering eIF4E a highly versatile and multifunctional player that functions as a molecular wildcard. Thus, in metazoans, eIF4E paralogs are involved in various processes, including messenger RNA (mRNA) processing, export, translation, storage, and decay. Moreover, some paralogs display differential expression in tissues and developmental stages and show variable biochemical properties. In this review, we discuss recent advances shedding light on the functional diversification of eIF4E in metazoans. We emphasise humans and two phylogenetically distant species which have become paradigms for studies on development, namely the fruit fly Drosophila melanogaster and the roundworm Caenorhabditis elegans.


Assuntos
Drosophila melanogaster , Fator de Iniciação 4E em Eucariotos , Humanos , Animais , Drosophila melanogaster/genética , Fator de Iniciação 4E em Eucariotos/genética , Fator de Iniciação 4E em Eucariotos/química , Fator de Iniciação 4E em Eucariotos/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , RNA/metabolismo
7.
Biochemistry ; 62(11): 1767-1775, 2023 06 06.
Artigo em Inglês | MEDLINE | ID: mdl-37132650

RESUMO

During cellular stress conditions, particularly those seen in multiple cancers, canonical cap-dependent translation is suppressed and a subset of cellular mRNAs (e.g., those encoding FGF-9, HIF-1α, and p53, among others) is known to translate in a cap-independent manner. Human eIF4GI specifically binds to the highly structured 5'-untranslated regions (5'UTRs) of these mRNAs to promote cap-independent translation. The thermodynamics of these protein-RNA interactions have not been explored, and such information will aid in understanding the basic interactions and in potential design of therapeutic drugs. Using fluorescence quenching-based assays and site-directed mutagenesis, we determined the thermodynamic properties of three eIF4GI constructs binding to the 5'UTRs of FGF-9, HIF-1α, and p53 mRNA. These three constructs were designed to explore the importance of the eIF4E binding domain of eIF4GI, which has been shown to be important in binding and selectivity. eIF4GI557-1599, containing the eIF4E binding domain, had higher binding enthalpy (-21 to -14 kJ mol-1 higher), suggesting increased hydrogen bonding, whereas for eIF4GI682-1599 lacking the eIF4E binding domain, binding was entropically favored (TΔS/ΔG of 46-85%), suggesting hydrophobic forces and/or less specific binding. A third construct where a cluster of positively charged amino acids was changed to neutral amino acids showed intermediate properties. Circular dichroism spectra confirmed the significant role of eIF4E binding domain in stable bond formation between eIF4GI and mRNAs via conformational changes. Together, these data contribute to a better understanding of the molecular forces involved in eIF4GI-mRNA recognition and elucidate properties important for the design of small molecules to mediate these interactions.


Assuntos
Fator de Iniciação 4G em Eucariotos , Proteína Supressora de Tumor p53 , Humanos , RNA Mensageiro/metabolismo , Regiões 5' não Traduzidas , Proteína Supressora de Tumor p53/metabolismo , Fator de Iniciação 4G em Eucariotos/genética , Fator de Iniciação 4G em Eucariotos/química , Fator de Iniciação 4G em Eucariotos/metabolismo , Ligação Proteica , Fator de Iniciação 4E em Eucariotos/genética , Fator de Iniciação 4E em Eucariotos/química , Fator de Iniciação 4E em Eucariotos/metabolismo , Biossíntese de Proteínas , Capuzes de RNA/metabolismo
8.
J Biol Chem ; 298(10): 102368, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35963437

RESUMO

During translation initiation, the underlying mechanism by which the eukaryotic initiation factor (eIF) 4E, eIF4A, and eIF4G components of eIF4F coordinate their binding activities to regulate eIF4F binding to mRNA is poorly defined. Here, we used fluorescence anisotropy to generate thermodynamic and kinetic frameworks for the interaction of uncapped RNA with human eIF4F. We demonstrate that eIF4E binding to an autoinhibitory domain in eIF4G generates a high-affinity binding conformation of the eIF4F complex for RNA. In addition, we show that the nucleotide-bound state of the eIF4A component further regulates uncapped RNA binding by eIF4F, with a four-fold decrease in the equilibrium dissociation constant observed in the presence versus the absence of ATP. Monitoring uncapped RNA dissociation in real time reveals that ATP reduces the dissociation rate constant of RNA for eIF4F by ∼4-orders of magnitude. Thus, release of ATP from eIF4A places eIF4F in a dynamic state that has very fast association and dissociation rates from RNA. Monitoring the kinetic framework for eIF4A binding to eIF4G revealed two different rate constants that likely reflect two conformational states of the eIF4F complex. Furthermore, we determined that the eIF4G autoinhibitory domain promotes a more stable, less dynamic, eIF4A-binding state, which is overcome by eIF4E binding. Overall, our data support a model whereby eIF4E binding to eIF4G/4A stabilizes a high-affinity RNA-binding state of eIF4F and enables eIF4A to adopt a more dynamic interaction with eIF4G. This dynamic conformation may contribute to the ability of eIF4F to rapidly bind and release mRNA during scanning.


Assuntos
Fator de Iniciação 4A em Eucariotos , Fator de Iniciação 4E em Eucariotos , Humanos , Trifosfato de Adenosina/metabolismo , Fator de Iniciação 4A em Eucariotos/química , Fator de Iniciação 4E em Eucariotos/química , Fator de Iniciação 4F em Eucariotos/química , Fator de Iniciação 4G em Eucariotos/química , Nucleotídeos/química , Ligação Proteica , RNA Mensageiro/metabolismo
9.
Biophys J ; 121(16): 3049-3060, 2022 08 16.
Artigo em Inglês | MEDLINE | ID: mdl-35841142

RESUMO

Intrinsically disordered proteins (IDPs) play critical roles in regulatory protein interactions, but detailed structural/dynamic characterization of their ensembles remain challenging, both in isolation and when they form dynamic "fuzzy" complexes. Such is the case for mRNA cap-dependent translation initiation, which is regulated by the interaction of the predominantly folded eukaryotic initiation factor 4E (eIF4E) with the intrinsically disordered eIF4E binding proteins (4E-BPs) in a phosphorylation-dependent manner. Single-molecule Förster resonance energy transfer showed that the conformational changes of 4E-BP2 induced by binding to eIF4E are non-uniform along the sequence; while a central region containing both motifs that bind to eIF4E expands and becomes stiffer, the C-terminal region is less affected. Fluorescence anisotropy decay revealed a non-uniform segmental flexibility around six different labeling sites along the chain. Dynamic quenching of these fluorescent probes by intrinsic aromatic residues measured via fluorescence correlation spectroscopy report on transient intra- and inter-molecular contacts on nanosecond-to-microsecond timescales. Upon hyperphosphorylation, which induces folding of ∼40 residues in 4E-BP2, the quenching rates decreased at most labeling sites. The chain dynamics around sites in the C-terminal region far away from the two binding motifs significantly increased upon binding to eIF4E, suggesting that this region is also involved in the highly dynamic 4E-BP2:eIF4E complex. Our time-resolved fluorescence data paint a sequence-level rigidity map of three states of 4E-BP2 differing in phosphorylation or binding status and distinguish regions that form contacts with eIF4E. This study adds complementary structural and dynamics information to recent studies of 4E-BP2, and it constitutes an important step toward a mechanistic understanding of this important IDP via integrative modeling.


Assuntos
Fator de Iniciação 4E em Eucariotos , Proteínas Intrinsicamente Desordenadas , Fator de Iniciação 4E em Eucariotos/química , Fator de Iniciação 4E em Eucariotos/genética , Fator de Iniciação 4E em Eucariotos/metabolismo , Fatores de Iniciação em Eucariotos/química , Fatores de Iniciação em Eucariotos/genética , Fatores de Iniciação em Eucariotos/metabolismo , Proteínas Intrinsicamente Desordenadas/química , Fosforilação , Ligação Proteica
10.
Biochem Cell Biol ; 100(4): 276-281, 2022 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-35658546

RESUMO

In this review, I describe our scientific journey to unearth the impact of RNA metabolism in cancer using the eukaryotic translation initiation factor eIF4E as an exemplar. This model allowed us to discover new structural, biochemical, and molecular features of RNA processing, and to reveal their substantial impact on cell physiology. This led us to develop proof-of-principle strategies to target these pathways in cancer patients leading to clinical benefit. I discuss the important role that the unexpected plays in research and the necessity of embracing the data even when it clashes with dogma. I also touch on the importance of equity, diversity, and inclusion to the success of the scientific enterprise.


Assuntos
Fator de Iniciação 4E em Eucariotos , Neoplasias , Fator de Iniciação 4E em Eucariotos/química , Fator de Iniciação 4E em Eucariotos/genética , Fator de Iniciação 4E em Eucariotos/metabolismo , Fatores de Iniciação em Eucariotos/metabolismo , Humanos , Neoplasias/genética
11.
Nat Chem Biol ; 18(9): 942-953, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35697798

RESUMO

Regenerating pancreatic ß-cells is a potential curative approach for diabetes. We previously identified the small molecule CID661578 as a potent inducer of ß-cell regeneration, but its target and mechanism of action have remained unknown. We now screened 257 million yeast clones and determined that CID661578 targets MAP kinase-interacting serine/threonine kinase 2 (MNK2), an interaction we genetically validated in vivo. CID661578 increased ß-cell neogenesis from ductal cells in zebrafish, neonatal pig islet aggregates and human pancreatic ductal organoids. Mechanistically, we found that CID661578 boosts protein synthesis and regeneration by blocking MNK2 from binding eIF4G in the translation initiation complex at the mRNA cap. Unexpectedly, this blocking activity augmented eIF4E phosphorylation depending on MNK1 and bolstered the interaction between eIF4E and eIF4G, which is necessary for both hypertranslation and ß-cell regeneration. Taken together, our findings demonstrate a targetable role of MNK2-controlled translation in ß-cell regeneration, a role that warrants further investigation in diabetes.


Assuntos
Fator de Iniciação 4E em Eucariotos , Fator de Iniciação 4G em Eucariotos , Animais , Linhagem Celular , Fator de Iniciação 4E em Eucariotos/química , Fator de Iniciação 4E em Eucariotos/genética , Fator de Iniciação 4E em Eucariotos/metabolismo , Humanos , Recém-Nascido , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Fosforilação , Proteínas Serina-Treonina Quinases/genética , Peixe-Zebra/metabolismo
12.
Biochemistry (Mosc) ; 86(9): 1128-1138, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34565316

RESUMO

Potato virus Y (PVY) is one of the most common and harmful plant viruses. Translation of viral RNA starts with the interaction between the plant cap-binding translation initiation factors eIF4E and viral genome-linked protein (VPg) covalently attached to the viral RNA. Disruption of this interaction is one of the natural mechanisms of plant resistance to PVY. The multigene eIF4E family in the potato (Solanum tuberosum L.) genome contains genes for the translation initiation factors eIF4E1, eIF4E2, and eIF(iso)4E. However, which of these factors can be recruited by the PVY, as well as the mechanism of this interaction, remain obscure. Here, we showed that the most common VPg variant from the PVY strain NTN interacts with eIF4E1 and eIF4E2, but not with eIF(iso)4E. Based on the VPg, eIF4E1, and eIF4E2 models and data on the natural polymorphism of VPg amino acid sequence, we suggested that the key role in the recognition of potato cap-binding factors belongs to the R104 residue of VPg. To verify this hypothesis, we created VPg mutants with substitutions at position 104 and examined their ability to interact with potato eIF4E factors. The obtained data were used to build the theoretical model of the VPg-eIF4E2 complex that differs significantly from the earlier models of VPg complexes with eIF4E proteins, but is in a good agreement with the current biochemical data.


Assuntos
Fator de Iniciação 4E em Eucariotos/metabolismo , Proteínas de Plantas/metabolismo , Potyvirus/metabolismo , Proteínas Virais/metabolismo , Sítios de Ligação , Fator de Iniciação 4E em Eucariotos/química , Ligação de Hidrogênio , Simulação de Dinâmica Molecular , Mutagênese Sítio-Dirigida , Proteínas de Plantas/química , Ligação Proteica , Isoformas de Proteínas/química , Isoformas de Proteínas/metabolismo , Estrutura Terciária de Proteína , Solanum tuberosum/metabolismo , Técnicas do Sistema de Duplo-Híbrido , Proteínas Virais/química , Proteínas Virais/genética
13.
Sci Rep ; 11(1): 13467, 2021 06 29.
Artigo em Inglês | MEDLINE | ID: mdl-34188131

RESUMO

By interacting with the mRNA 5' cap, the translation initiation factor eIF4E plays a critical role in selecting mRNAs for protein synthesis in eukaryotic cells. Caf20 is a member of the family of proteins found across eukaryotes termed 4E-BPs, which compete with eIF4G for interaction with eIF4E. Caf20 independently interacts with ribosomes. Thus, Caf20 modulates the mRNA selection process via poorly understood mechanisms. Here we performed unbiased mutagenesis across Caf20 to characterise which regions of Caf20 are important for interaction with eIF4E and with ribosomes. Caf20 binding to eIF4E is entirely dependent on a canonical motif shared with other 4E-BPs. However, binding to ribosomes is weakened by mutations throughout the protein, suggesting an extended binding interface that partially overlaps with the eIF4E-interaction region. By using chemical crosslinking, we identify a potential ribosome interaction region on the ribosome surface that spans both small and large subunits and is close to a known interaction site of eIF3. The function of ribosome binding by Caf20 remains unclear.


Assuntos
Fator de Iniciação 4E em Eucariotos/química , RNA Fúngico/química , RNA Mensageiro/química , Ribossomos/química , Proteínas de Saccharomyces cerevisiae/química , Saccharomyces cerevisiae/química , Fatores de Transcrição/química , Fator de Iniciação 4E em Eucariotos/genética , Fator de Iniciação 4E em Eucariotos/metabolismo , Mutação , RNA Fúngico/genética , RNA Fúngico/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Ribossomos/genética , Ribossomos/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
14.
RNA Biol ; 18(12): 2433-2449, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-33945405

RESUMO

The mRNA cap-binding protein, eIF4E, mediates the recognition of the mRNA 5' end and, as part of the heterotrimeric eIF4F complex, facilitates the recruitment of the ribosomal subunits to initiate eukaryotic translation. Various regulatory events involving eIF4E and a second eIF4F subunit, eIF4G, are required for proper control of translation initiation. In pathogenic trypanosomatids, six eIF4Es and five eIF4Gs have been described, several forming different eIF4F-like complexes with yet unresolved roles. EIF4E5 is one of the least known of the trypanosomatid eIF4Es and has not been characterized in Leishmania species. Here, we used immunoprecipitation assays, combined with mass-spectrometry, to identify major EIF4E5 interacting proteins in L. infantum. A constitutively expressed, HA-tagged, EIF4E5 co-precipitated mainly with EIF4G1 and binding partners previously described in Trypanosoma brucei, EIF4G1-IP, RBP43 and the 14-3-3 proteins. In contrast, no clear co-precipitation with EIF4G2, also previously reported, was observed. EIF4E5 also co-precipitated with protein kinases, possibly associated with cell-cycle regulation, selected RNA binding proteins and histones. Phosphorylated residues were identified and mapped to the Leishmania-specific C-terminal end. Mutagenesis of the tryptophan residue (W53) postulated to mediate interactions with protein partners or of a neighbouring tryptophan conserved in Leishmania (W45) did not substantially impair the identified interactions. Finally, the crystal structure of Leishmania EIF4E5 evidences remarkable differences in the eIF4G interfacing region, when compared with human eIF4E-1 and with its Trypanosoma orthologue. Mapping of its C-terminal end near the cap-binding site also imply relevant differences in cap-binding function and/or regulation.


Assuntos
Fator de Iniciação 4E em Eucariotos/química , Fator de Iniciação 4E em Eucariotos/metabolismo , Leishmania/metabolismo , Mapas de Interação de Proteínas , Proteínas de Protozoários/metabolismo , Sequência de Aminoácidos , Sítios de Ligação , Cristalografia por Raios X , Fator de Iniciação 4E em Eucariotos/genética , Humanos , Leishmania/genética , Ligação Proteica , Conformação Proteica , Proteínas de Protozoários/química , Proteínas de Protozoários/genética , Homologia de Sequência
15.
Mol Cell ; 81(11): 2403-2416.e5, 2021 06 03.
Artigo em Inglês | MEDLINE | ID: mdl-33852892

RESUMO

The activation of cap-dependent translation in eukaryotes requires multisite, hierarchical phosphorylation of 4E-BP by the 1 MDa kinase mammalian target of rapamycin complex 1 (mTORC1). To resolve the mechanism of this hierarchical phosphorylation at the atomic level, we monitored by NMR spectroscopy the interaction of intrinsically disordered 4E binding protein isoform 1 (4E-BP1) with the mTORC1 subunit regulatory-associated protein of mTOR (Raptor). The N-terminal RAIP motif and the C-terminal TOR signaling (TOS) motif of 4E-BP1 bind separate sites in Raptor, resulting in avidity-based tethering of 4E-BP1. This tethering orients the flexible central region of 4E-BP1 toward the mTORC1 kinase site for phosphorylation. The structural constraints imposed by the two tethering interactions, combined with phosphorylation-induced conformational switching of 4E-BP1, explain the hierarchy of 4E-BP1 phosphorylation by mTORC1. Furthermore, we demonstrate that mTORC1 recognizes both free and eIF4E-bound 4E-BP1, allowing rapid phosphorylation of the entire 4E-BP1 pool and efficient activation of translation. Finally, our findings provide a mechanistic explanation for the differential rapamycin sensitivity of the 4E-BP1 phosphorylation sites.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/química , Proteínas de Ciclo Celular/química , Fator de Iniciação 4E em Eucariotos/química , Alvo Mecanístico do Complexo 1 de Rapamicina/química , Proteína Regulatória Associada a mTOR/química , Serina-Treonina Quinases TOR/química , Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Sítios de Ligação , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Chaetomium/química , Chaetomium/genética , Clonagem Molecular , Cristalografia por Raios X , Escherichia coli/genética , Escherichia coli/metabolismo , Fator de Iniciação 4E em Eucariotos/genética , Fator de Iniciação 4E em Eucariotos/metabolismo , Expressão Gênica , Vetores Genéticos/química , Vetores Genéticos/metabolismo , Humanos , Cinética , Alvo Mecanístico do Complexo 1 de Rapamicina/genética , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Modelos Moleculares , Fosforilação , Ligação Proteica , Conformação Proteica em alfa-Hélice , Conformação Proteica em Folha beta , Domínios e Motivos de Interação entre Proteínas , Processamento de Proteína Pós-Traducional , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Proteína Regulatória Associada a mTOR/genética , Proteína Regulatória Associada a mTOR/metabolismo , Transdução de Sinais , Homologia Estrutural de Proteína , Especificidade por Substrato , Serina-Treonina Quinases TOR/genética , Serina-Treonina Quinases TOR/metabolismo
16.
ACS Chem Biol ; 16(2): 334-343, 2021 02 19.
Artigo em Inglês | MEDLINE | ID: mdl-33439620

RESUMO

mRNA-based therapies and vaccines constitute a disruptive technology with the potential to revolutionize modern medicine. Chemically modified 5' cap structures have provided access to mRNAs with superior translational properties that could benefit the currently flourishing mRNA field. Prime examples of compounds that enhance mRNA properties are antireverse cap analog diastereomers that contain an O-to-S substitution within the ß-phosphate (ß-S-ARCA D1 and D2), where D1 is used in clinically investigated mRNA vaccines. The compounds were previously found to have high affinity for eukaryotic translation initiation factor 4E (eIF4E) and augment translation in vitro and in vivo. However, the molecular basis for the beneficial "thio-effect" remains unclear. Here, we employed multiple biophysical techniques and captured 11 cap analog-eIF4E crystallographic structures to investigate the consequences of the ß-O-to-S or -Se substitution on the interaction with eIF4E. We determined the SP/RP configurations of ß-S-ARCA and related compounds and obtained structural insights into the binding. Unexpectedly, in both stereoisomers, the ß-S/Se atom occupies the same binding cavity between Lys162 and Arg157, indicating that the key driving force for complex stabilization is the interaction of negatively charged S/Se with positively charged amino acids. This was observed for all structural variants of the cap and required significantly different conformations of the triphosphate for each diastereomer. This finding explains why both ß-S-ARCA diastereomers have higher affinity for eIF4E than unmodified caps. Binding affinities determined for di-, tri-, and oligonucleotide cap analogs suggested that the "thio-effect" was preserved in longer RNAs. Our observations broaden the understanding of thiophosphate biochemistry and enable the rational design of translationally active mRNAs and eIF4E-targeting drugs.


Assuntos
Fator de Iniciação 4E em Eucariotos/metabolismo , Oligonucleotídeos Fosforotioatos/metabolismo , Capuzes de RNA/metabolismo , Animais , Sítios de Ligação , Linhagem Celular , Cristalografia por Raios X , Fator de Iniciação 4E em Eucariotos/química , Camundongos , Conformação de Ácido Nucleico , Compostos Organosselênicos/química , Compostos Organosselênicos/metabolismo , Oligonucleotídeos Fosforotioatos/química , Ligação Proteica , Capuzes de RNA/química , Eletricidade Estática , Estereoisomerismo
17.
Methods Mol Biol ; 2209: 347-361, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33201480

RESUMO

In eukaryotes, the maturation of the 3' ends of most transcripts involves cleavage and polyadenylation steps in the nucleus. While I was working in the group of Katherine Borden at the University of Montréal, we reported that the eukaryotic translation initiation factor 4E (eIF4E) promotes the 3' end cleavage of specific RNAs. Here, I describe how we monitored this specific maturation pathway using subcellular fractionation, quantitative RT-PCR, and an in vitro cleavage assay with the nuclear fraction.


Assuntos
Fator de Iniciação 4E em Eucariotos/química , Processamento de Terminações 3' de RNA , RNA Mensageiro , Núcleo Celular/química , Humanos , Ligação Proteica , RNA Mensageiro/química
18.
Acta Pharmacol Sin ; 42(1): 108-114, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-32398685

RESUMO

Glioblastoma (GBM) patients have extremely poor prognoses, and currently no effective treatment available including surgery, radiation, and chemotherapy. MAPK-interacting kinases (MNK1/2) as the downstream of the MAPK-signaling pathway regulate protein synthesis in normal and tumor cells. Research has shown that targeting MNKs may be an effective strategy to treat GBM. In this study we investigated the antitumor activity of osimertinib, an FDA-approved epidermal growth factor receptor (EGFR) inhibitor, against patient-derived primary GBM cells. Using high-throughput screening approach, we screened the entire panel of FDA-approved drugs against primary cancer cells derived from glioblastoma patients, found that osimertinib (3 µM) suppressed the proliferation of a subset (10/22) of EGFR-negative GBM cells (>50% growth inhibition). We detected the gene expression difference between osimertinib-sensitive and -resistant cells, found that osimertinib-sensitive GBM cells displayed activated MAPK-signaling pathway. We further showed that osimertinib potently inhibited the MNK kinase activities with IC50 values of 324 nM and 48.6 nM, respectively, against MNK1 and MNK2 kinases; osimertinib (0.3-3 µM) dose-dependently suppressed the phosphorylation of eukaryotic translation initiation factor 4E (eIF4E). In GBM patient-derived xenografts mice, oral administration of osimertinib (40 mg· kg-1 ·d-1, for 18 days) significantly suppressed the tumor growth (TGI = 74.5%) and inhibited eIF4E phosphorylation in tumor cells. Given the fact that osimertinib could cross the blood-brain barrier and its toxicity was well tolerated in patients, our results suggest that osimertinib could be a new and effective drug candidate for the EGFR-negative GBM patients.


Assuntos
Acrilamidas/uso terapêutico , Compostos de Anilina/uso terapêutico , Antineoplásicos/uso terapêutico , Glioblastoma/tratamento farmacológico , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Inibidores de Proteínas Quinases/uso terapêutico , Adolescente , Adulto , Idoso , Animais , Proliferação de Células/efeitos dos fármacos , Células Cultivadas , Criança , Receptores ErbB/deficiência , Fator de Iniciação 4E em Eucariotos/química , Fator de Iniciação 4E em Eucariotos/metabolismo , Feminino , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/antagonistas & inibidores , Masculino , Camundongos , Pessoa de Meia-Idade , Fosforilação/efeitos dos fármacos , Proteínas Serina-Treonina Quinases/antagonistas & inibidores , Ensaios Antitumorais Modelo de Xenoenxerto , Adulto Jovem
19.
Proc Natl Acad Sci U S A ; 117(43): 26773-26783, 2020 10 27.
Artigo em Inglês | MEDLINE | ID: mdl-33055213

RESUMO

Methyl-7-guanosine (m7G) "capping" of coding and some noncoding RNAs is critical for their maturation and subsequent activity. Here, we discovered that eukaryotic translation initiation factor 4E (eIF4E), itself a cap-binding protein, drives the expression of the capping machinery and increased capping efficiency of ∼100 coding and noncoding RNAs. To quantify this, we developed enzymatic (cap quantification; CapQ) and quantitative cap immunoprecipitation (CapIP) methods. The CapQ method has the further advantage that it captures information about capping status independent of the type of 5' cap, i.e., it is not restricted to informing on m7G caps. These methodological advances led to unanticipated revelations: 1) Many RNA populations are inefficiently capped at steady state (∼30 to 50%), and eIF4E overexpression increased this to ∼60 to 100%, depending on the RNA; 2) eIF4E physically associates with noncoding RNAs in the nucleus; and 3) approximately half of eIF4E-capping targets identified are noncoding RNAs. eIF4E's association with noncoding RNAs strongly positions it to act beyond translation. Coding and noncoding capping targets have activities that influence survival, cell morphology, and cell-to-cell interaction. Given that RNA export and translation machineries typically utilize capped RNA substrates, capping regulation provides means to titrate the protein-coding capacity of the transcriptome and, for noncoding RNAs, to regulate their activities. We also discovered a cap sensitivity element (CapSE) which conferred eIF4E-dependent capping sensitivity. Finally, we observed elevated capping for specific RNAs in high-eIF4E leukemia specimens, supporting a role for cap dysregulation in malignancy. In all, levels of capping RNAs can be regulated by eIF4E.


Assuntos
Fator de Iniciação 4E em Eucariotos/metabolismo , Guanosina/análogos & derivados , Capuzes de RNA/metabolismo , RNA Mensageiro/metabolismo , Linhagem Celular Tumoral , Fator de Iniciação 4E em Eucariotos/química , Fator de Iniciação 4E em Eucariotos/genética , Guanosina/química , Guanosina/genética , Guanosina/metabolismo , Humanos , Polirribossomos/metabolismo , Capuzes de RNA/química , Capuzes de RNA/genética , RNA Mensageiro/química , RNA Mensageiro/genética , Transcriptoma/genética
20.
Nucleic Acids Res ; 48(15): 8562-8575, 2020 09 04.
Artigo em Inglês | MEDLINE | ID: mdl-32749456

RESUMO

Eukaryotic cellular mRNAs possess a 5' cap structure (m7GpppN) which plays a critical role in translation initiation mediated by eukaryotic initiation factor (eIF) 4F. The heterotrimeric eIF4F complex possesses several activities imparted by its subunits that include cap recognition (by eIF4E), RNA unwinding (eIF4A), and factor/ribosome recruitment (eIF4G). Mammalian cells have paralogs of all three eIF4F subunits and it remains an open question as to whether these all can participate in the process of ribosome recruitment. To query the activities of the eIF4F subunits in translation initiation, we adopted an RNA-tethering assay in which select subunits are recruited to a specific address on a reporter mRNA template. We find that all eIF4F subunits can participate in the initiation process. Based on eIF4G:eIF4A structural information, we also designed obligate dimer pairs to probe the activity of all combinations of eIF4G and eIF4A paralogs. We demonstrate that both eIF4GI and eIF4GII can associate with either eIF4A1 or eIF4A2 to recruit ribosomes to mRNA templates. In combination with eIF4E and eIF4E3, our results indicate the presence of up to eight eIF4F complexes that can operate in translation initiation.


Assuntos
Fator de Iniciação 4E em Eucariotos/genética , Fator de Iniciação 4F em Eucariotos/genética , Fator de Iniciação 4G em Eucariotos/genética , Biossíntese de Proteínas , Sequência de Aminoácidos/genética , Animais , Fator de Iniciação 4E em Eucariotos/química , Fator de Iniciação 4F em Eucariotos/química , Células HEK293 , Humanos , Camundongos , Ligação Proteica/genética , Análogos de Capuz de RNA/genética , Capuzes de RNA/genética , RNA Mensageiro/genética , Ribossomos/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...